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CS 188: Artificial Intelligence 
 

Probabilistic Inference: 
Enumeration, Variable Elimination, Sampling 

Pieter Abbeel – UC Berkeley 

Many slides over this course adapted from Dan Klein, Stuart Russell, 
Andrew Moore 

Bayes’ Nets 

§  Representation 
§  Conditional Independences 
§  Probabilistic Inference 

§  Enumeration (exact, exponential complexity) 
§  Variable elimination (exact, worst-case 

exponential complexity, often better) 
§  Probabilistic inference is NP-complete 
§  Sampling (approximate) 

§  Learning Bayes’ Nets from Data 2 
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Inference 

§  Inference: calculating some 
useful quantity from a joint 
probability distribution 

§  Examples: 
§  Posterior probability: 

§  Most likely explanation: 
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Inference by Enumeration 

§  Given unlimited time, inference in BNs is easy 
§  Recipe: 

§  State the marginal probabilities you need 
§  Figure out ALL the atomic probabilities you need 
§  Calculate and combine them 

§  Example: 
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Example: Enumeration 
§  In this simple method, we only need the BN to 

synthesize the joint entries 

6 

Inference by Enumeration? 

7 
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Variable Elimination 

§  Why is inference by enumeration so slow? 
§  You join up the whole joint distribution before you sum 

out the hidden variables 

§  Idea: interleave joining and marginalizing! 
§  Called “Variable Elimination” 
§  Still NP-hard, but usually much faster than inference 

by enumeration 

§  We’ll need some new notation to define VE 
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Factor Zoo I 

§  Joint distribution: P(X,Y) 
§  Entries P(x,y) for all x, y 
§  Sums to 1 

§  Selected joint: P(x,Y) 
§  A slice of the joint distribution 
§  Entries P(x,y) for fixed x, all y 
§  Sums to P(x) 

§  Number of capitals = 
dimensionality of the table 
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T W P 
hot sun 0.4 
hot rain 0.1 
cold sun 0.2 
cold rain 0.3 

T W P 
cold sun 0.2 
cold rain 0.3 
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Factor Zoo II 
§  Family of conditionals:  

 P(X |Y) 
§  Multiple conditionals 
§  Entries P(x | y) for all x, y 
§  Sums to |Y| 

§  Single conditional: P(Y | x) 
§  Entries P(y | x) for fixed 

x, all y 
§  Sums to 1 
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T W P 
hot sun 0.8 
hot rain 0.2 
cold sun 0.4 
cold rain 0.6 

T W P 
cold sun 0.4 
cold rain 0.6 

Factor Zoo III 

§  Specified family: P(y | X) 
§  Entries P(y | x) for fixed y, 

 but for all x 
§  Sums to … who knows! 

§  In general, when we write P(Y1 … YN | X1 … XM) 
§  It is a “factor,” a multi-dimensional array 
§  Its values are all P(y1 … yN | x1 … xM) 
§  Any assigned X or Y is a dimension missing (selected) from the array 

11 

T W P 
hot rain 0.2 
cold rain 0.6 
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Example: Traffic Domain 

§  Random Variables 
§ R: Raining 
§  T: Traffic 
§  L: Late for class! 
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T 

L 

R +r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

§  Track objects called factors 
§  Initial factors are local CPTs (one per node) 

§  Any known values are selected 
§  E.g. if we know                  , the initial factors are 

§  VE: Alternately join factors and eliminate variables 13 

Variable Elimination Outline 

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+t	   +l	   0.3	  
-‐t	   +l	   0.1	  

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  
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§  First basic operation: joining factors 
§  Combining factors: 

§  Just like a database join 
§  Get all factors over the joining variable 
§  Build a new factor over the union of the variables involved 

§  Example: Join on R 

§  Computation for each entry: pointwise products 
14 

Operation 1: Join Factors 

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+r	   +t	   0.08	  
+r	   -‐t	   0.02	  
-‐r	   +t	   0.09	  
-‐r	   -‐t	   0.81	  T 

R 

R,T 

Example: Multiple Joins 

16 

T 

R Join R 

L 

R, T 

L 

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+r	   +t	   0.08	  
+r	   -‐t	   0.02	  
-‐r	   +t	   0.09	  
-‐r	   -‐t	   0.81	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  
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Example: Multiple Joins 

17 

Join T 

R, T, L 

R, T 

L 

+r	   +t	   0.08	  
+r	   -‐t	   0.02	  
-‐r	   +t	   0.09	  
-‐r	   -‐t	   0.81	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+r	   +t	   +l	   0.024	  
+r	   +t	   -‐l	   0.056	  
+r	   -‐t	   +l	   0.002	  
+r	   -‐t	   -‐l	   0.018	  
-‐r	   +t	   +l	   0.027	  
-‐r	   +t	   -‐l	   0.063	  
-‐r	   -‐t	   +l	   0.081	  
-‐r	   -‐t	   -‐l	   0.729	  

Operation 2: Eliminate 

§  Second basic operation: marginalization 
§  Take a factor and sum out a variable 

§  Shrinks a factor to a smaller one 
§  A projection operation 

§  Example: 

18 

+r	   +t	   0.08	  
+r	   -‐t	   0.02	  
-‐r	   +t	   0.09	  
-‐r	   -‐t	   0.81	  

+t	   0.17	  
-‐t	   0.83	  
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Multiple Elimination 

19 

Sum 
out R 

Sum 
out T 

T, L L R, T, L 

+r	   +t	   +l	   0.024	  
+r	   +t	   -‐l	   0.056	  
+r	   -‐t	   +l	   0.002	  
+r	   -‐t	   -‐l	   0.018	  
-‐r	   +t	   +l	   0.027	  
-‐r	   +t	   -‐l	   0.063	  
-‐r	   -‐t	   +l	   0.081	  
-‐r	   -‐t	   -‐l	   0.729	  

+t	   +l	   0.051	  
+t	   -‐l	   0.119	  
-‐t	   +l	   0.083	  
-‐t	   -‐l	   0.747	  

+l	   0.134	  
-‐l	   0.886	  

P(L) : Marginalizing Early! 

20 

Sum out R 

T 

L 

+r	   +t	   0.08	  
+r	   -‐t	   0.02	  
-‐r	   +t	   0.09	  
-‐r	   -‐t	   0.81	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+t	   0.17	  
-‐t	   0.83	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

T 

R 

L 

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

Join R 

R, T 

L 
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Marginalizing Early (aka VE*) 

Join T Sum out T 
T, L L 

* VE is variable elimination 

T 

L 

+t	   0.17	  
-‐t	   0.83	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+t	   +l	   0.051	  
+t	   -‐l	   0.119	  
-‐t	   +l	   0.083	  
-‐t	   -‐l	   0.747	  

+l	   0.134	  
-‐l	   0.886	  

§  If evidence, start with factors that select that evidence 
§  No evidence uses these initial factors: 

§  Computing                        , the initial factors become: 

§  We eliminate all vars other than query + evidence 
22 

Evidence 

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+r	   0.1	   +r	   +t	   0.8	  
+r	   -‐t	   0.2	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  
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§  Result will be a selected joint of query and evidence 
§  E.g. for P(L | +r), we’d end up with: 

§  To get our answer, just normalize this! 

§  That’s it! 

23 

Evidence II 

+l	   0.26	  
-‐l	   0.74	  

+r	   +l	   0.026	  
+r	   -‐l	   0.074	  

Normalize 

General Variable Elimination 
§  Query: 

§  Start with initial factors: 
§  Local CPTs (but instantiated by evidence) 

§  While there are still hidden variables (not Q or evidence): 
§  Pick a hidden variable H 
§  Join all factors mentioning H 
§  Eliminate (sum out) H 

§  Join all remaining factors and normalize 

24 
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Example 

Choose A 

25 

Example 

Choose E 

Finish with B 

Normalize 

26 
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Same Example in Equations 

 
marginal can be obtained from joint by summing out 
 
use Bayes’ net joint distribution expression 
 
use x*(y+z) = xy + xz 
 
joining on a, and then summing out gives f_1 
 

x*(y+z)  = xy + xz 
 
joining on e, and then summing out gives f_2 

28 

B E 
A 

J M 

All we are doing is exploiting xy + xz = x(y+z) to improve computational efficiency! 

Another (bit more abstractly worked 
out) Variable Elimination Example 

29 

Computational complexity critically depends on the largest factor being 
generated in this process.  Size of factor = number of entries in table.  In 
example above (assuming binary) all factors generated are of size 2 --- as 
they all only have one variable (Z, Z, and X3 respectively).  
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§  For the query P(Xn|y1,…,yn) work through the following two different 
orderings as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, 
Z.  What is the size of the maximum factor generated for each of the 
orderings? 

§  Answer: 2n versus 2 (assuming binary) 
§  In general: the ordering can greatly affect efficiency.   

Variable Elimination Ordering 

30 

… 

… 

Computational and Space 
Complexity of Variable Elimination 

§  The computational and space complexity of variable 
elimination is determined by the largest factor 

§  The elimination ordering can greatly affect the size of the 
largest factor.   
§  E.g., previous slide’s example 2n vs. 2 

§  Does there always exist an ordering that only results in 
small factors? 
§  No! 

31 
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Worst Case Complexity? 
§  Consider the 3-SAT clause:   

       which can be encoded by the following Bayes’ net: 

§  If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution. 
§  Subtlety: why the cascaded version of the AND rather than feeding all OR clauses into a single 

AND?  Answer: a single AND would have an exponentially large CPT, whereas with representation 
above the Bayes’ net has small CPTs only.  

§  Hence inference in Bayes’ nets is NP-hard.  No known efficient probabilistic inference in general. 
32 

… 

… 

Polytrees 

§  A polytree is a directed graph with no 
undirected cycles 

§  For poly-trees you can always find an 
ordering that is efficient  
§  Try it!! 

§  Cut-set conditioning for Bayes’ net 
inference 
§ Choose set of variables such that if removed 

only a polytree remains 
§  Think about how the specifics would work out! 33 
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Bayes’ Nets 

§  Representation 
§  Conditional Independences 
§  Probabilistic Inference 

§  Enumeration (exact, exponential complexity) 
§  Variable elimination (exact, worst-case 

exponential complexity, often better) 
§  Probabilistic inference is NP-complete 
§  Sampling (approximate) 

§  Learning Bayes’ Nets from Data 36 

Sampling 
§  Simulation has a name: sampling (e.g., predicting the 

weather, basketball games, …) 

§  Basic idea: 
§  Draw N samples from a sampling distribution S 
§  Compute an approximate posterior probability 
§  Show this converges to the true probability P 

§  Why sample? 
§  Learning: get samples from a distribution you don’t know 
§  Inference: getting a sample is faster than computing the right 

answer (e.g. with variable elimination) 

37 
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Sampling 

§  How do you sample? 
§  Simplest way is to use a random number 

generator to get a continuous value uniformly 
distributed between 0 and 1 (e.g. random() in 
Python) 

§  Assign each value in the domain of your 
random variable a sub-interval of [0,1] with a 
size equal to its probability 
§ The sub-intervals cannot overlap 

38 

Sampling Example 

§  Each value in the domain of W has a sub-
interval of [0,1] with a size equal to its 
probability 

39 

W P(W) 
Sun 0.6 
Rain 0.1 
Fog 0.3 

Meteor 0.0 

u is a uniform random value in [0, 1]

if 0.0 ≤ u < 0.6, w = sun

if 0.6 ≤ u < 0.7, w = rain

if 0.7 ≤ u < 1.0, w = fog

e.g. if random() returns u = 0.83, then our sample is w = fog
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Sampling in Bayes’ Nets 

§  Prior Sampling 
§  Rejection Sampling 
§  Likelihood Weighting 
§  Gibbs Sampling 

40 

Prior Sampling 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 

41 

+c	   0.5	  
-‐c	   0.5	  

+c	  
	  

+s	   0.1	  
-‐s	   0.9	  

-‐c	  
	  

+s	   0.5	  
-‐s	   0.5	  

+c	  
	  

+r	   0.8	  
-‐r	   0.2	  

-‐c	  
	  

+r	   0.2	  
-‐r	   0.8	  

+s	  
	  
	  
	  

+r	  
	  

+w	   0.99	  
-‐w	   0.01	  

-‐r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐s	  
	  
	  
	  

+r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐r	  
	  

+w	   0.01	  
-‐w	   0.99	  

Samples: 

+c, -s, +r, +w 
-c, +s, -r, +w 

… 
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Prior Sampling 

§  To generate one sample from a Bayes’ net with 
n variables.  Assume variables are named such 
that ordering X1, X2, …, Xn is consistent with the 
DAG. 

§  For i=1, 2, …, n 
§  Sample xi from P(Xi | Parents(Xi)) 

§  End For 
§  Return (x1, x2, …, xn) 

42 

Prior Sampling 
§  This process generates samples with probability: 

 …i.e. the BN’s joint probability 

§  Let the number of samples of an event be 

§  Then 

§  I.e., the sampling procedure is consistent 
43 
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Example 
§  We’ll get a bunch of samples from the BN: 

 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w 

§  If we want to know P(W) 
§  We have counts <+w:4, -w:1> 
§  Normalize to get P(W) = <+w:0.8, -w:0.2> 
§  This will get closer to the true distribution with more samples 
§  Can estimate anything else, too 
§  What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)? 
§  Fast: can use fewer samples if less time (what’s the drawback?) 

Cloudy 

Sprinkler Rain 

WetGrass 

C 

S R 

W 

44 

Rejection Sampling 

§  Let’s say we want P(C) 
§  No point keeping all samples around 
§  Just tally counts of C as we go 

§  Let’s say we want P(C| +s) 
§  Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 
have S=+s 

§  This is called rejection sampling 
§  It is also consistent for conditional 

probabilities (i.e., correct in the limit) 

 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w 

Cloudy 

Sprinkler Rain 

WetGrass 

C 

S R 

W 

45 
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Rejection Sampling 

§  For i=1, 2, …, n 
§  Sample xi from P(Xi | Parents(Xi)) 
§  If xi not consistent with the evidence in the 

query, exit this for-loop and no sample is 
generated 

§  End For 
§  Return (x1, x2, …, xn) 

46 

Likelihood Weighting 
§  Problem with rejection sampling: 

§  If evidence is unlikely, you reject a lot of samples 
§  You don’t exploit your evidence as you sample 
§  Consider P(B|+a) 

§  Idea: fix evidence variables and sample the rest 

§  Problem: sample distribution not consistent! 
§  Solution: weight by probability of evidence given parents 

Burglary Alarm 

Burglary Alarm 

48 

 -b,  -a 
 -b,  -a 
 -b,  -a 
 -b,  -a 
+b, +a 

 -b  +a 
 -b, +a 
 -b, +a 
 -b, +a 
+b, +a 
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Likelihood Weighting 

49 

+c	   0.5	  
-‐c	   0.5	  

+c	  
	  

+s	   0.1	  
-‐s	   0.9	  

-‐c	  
	  

+s	   0.5	  
-‐s	   0.5	  

+c	  
	  

+r	   0.8	  
-‐r	   0.2	  

-‐c	  
	  

+r	   0.2	  
-‐r	   0.8	  

+s	  
	  
	  
	  

+r	  
	  

+w	   0.99	  
-‐w	   0.01	  

-‐r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐s	  
	  
	  
	  

+r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐r	  
	  

+w	   0.01	  
-‐w	   0.99	  

Samples: 

+c, +s, +r, +w 
… 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 

Likelihood Weighting 

§  Set w = 1.0 
§  For i=1, 2, …, n 

§  If Xi is an evidence variable 
§ Set Xi = observation xi for Xi 

§ Set w = w * P(xi | Parents(Xi)) 
§  Else 

§ Sample xi from P(Xi | Parents(Xi)) 

§  End For 
§  Return (x1, x2, …, xn), w 

50 
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Likelihood Weighting 
§  Sampling distribution if z sampled and e fixed evidence 

§  Now, samples have weights 

§  Together, weighted sampling distribution is consistent 

Cloudy 

R 

C 

S 

W 

51 

Likelihood Weighting 
§  Likelihood weighting is good 

§  We have taken evidence into account as we 
generate the sample 

§  E.g. here, W’s value will get picked based on 
the evidence values of S, R 

§  More of our samples will reflect the state of 
the world suggested by the evidence 

§   Likelihood weighting doesn’t solve all our 
problems 
§  Evidence influences the choice of 

downstream variables, but not upstream ones 
(C isn’t more likely to get a value matching 
the evidence) 

§  We would like to consider evidence when we 
sample every variable 

 à Gibbs sampling 
52 

Cloudy 

Rain 

C 

S R 

W 
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Gibbs Sampling 
§  Procedure: keep track of a full instantiation x1, x2, …, xn.   Start with 

an arbitrary instantation consistent with the evidence.  Sample one 
variable at a time, conditioned on all the rest, but keep evidence 
fixed.  Keep repeating this for a long time. 

§  Property: in the limit of repeating this infinitely many times the 
resulting sample is coming from the correct distribution 

§  What’s the point: both upstream and downstream variables 
condition on evidence.   

     In contrast: likelihood weighting only conditions on upstream 
evidence, and hence weights obtained in likelihood weighting can 
sometimes be very small.  Sum of weights over all samples is indicative 
of how many “effective” samples were obtained, so want high weight. 

53 

Gibbs Sampling 
§  Say we want to sample P(S | R = +r) 
§  Step 1: Initialize 

§  Set evidence (R = +r) 
§  Set all other variables (S, C, W) to random values (e.g. by prior 

sampling or just uniformly sampling; say S = s, W = +w, C = -c) 

§  Steps 2+: Repeat the following for some number of 
iterations 
§  Choose a non-evidence variable (S, W, or C in this case) 
§  Sample this variable conditioned on nothing else changing  

§  The first time through, if we pick S, we sample from P(S | R = +r, W = +w, C =-c)  

§  The new sample can only be different in a single variable 

54 
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Gibbs Sampling Example 

§   Want to sample from P(R | +s,-c,-w)   
§  Shorthand for P(R | S=+s,C=-c,W=-w) 

§   Many things cancel out -- just a join on R 
56 

P (R|+ s,−c,−w) =
P (R,+s,−c,−w)

P (+s,−c,−w)

=
P (R,+s,−c,−w)�

r P (R = r,+s,−c,−w)

=
P (−c)P (+s|− c)P (R|− c)P (−w|+ s,R)�

r P (−c)P (+s|− c)P (R = r|− c)P (−w|+ s,R = r)

=
P (R|− c)P (−w|+ s,R)�

r P (R = r|− c)P (−w|+ s,R = r)

Further Reading* 

§   Gibbs sampling is a special case of more 
general methods called Markov chain 
Monte Carlo (MCMC) methods  
§ Metropolis-Hastings is one of the more 

famous MCMC methods (in fact, Gibbs 
sampling is a special case of Metropolis-
Hastings)  

§  You may read about Monte Carlo methods 
– they’re just sampling 

57 


